Least Squares and Best Unbiased Estimates

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversals of Least-Squares Estimates

An adjusted estimate may be opposite the original estimate. This paper presents necessary and sufficient conditions for such a reversal, in the context of linear modeling, where adjustment is obtained through considering additional explanatory data associated with lurking variables.

متن کامل

Barankin Vector Locally Best Unbiased Estimates

The Barankin bound is generalized to the vector case in the mean square error sense. Necessary and sufficient conditions are obtained to achieve the lower bound. To obtain the result, a simple finite dimensional real vector valued generalization of the Riesz representation theorem for Hilbert spaces is given. The bound has the form of a linear matrix inequality where the covariances of any unbi...

متن کامل

Linear Least Squares Estimates and Nonlinear Means

The consistency and asymptotic normality of a linear least squares estimate of the form (X,X)-X’Y when the mean is not X/I is investigated in this paper. The least squares estimate is a consistent estimate of the best linear approximation of the true mean function for the design chosen. The asymptotic normality of the least squares estimate depends on the design and the asymptotic mean may not ...

متن کامل

On equality and proportionality of ordinary least squares, weighted least squares and best linear unbiased estimators in the general linear model

Equality and proportionality of the ordinary least-squares estimator (OLSE), the weighted least-squares estimator (WLSE), and the best linear unbiased estimator (BLUE) for Xb in the general linear (Gauss–Markov) model M 1⁄4 fy;Xb; sRg are investigated through the matrix rank method. r 2006 Elsevier B.V. All rights reserved. MSC: Primary 62J05; 62H12; 15A24

متن کامل

Discontinuous parameter estimates with least squares estimators

We discuss weighted least squares estimates of ill-conditioned linear inverse problems where weights are chosen to be inverse error covariance matrices. Least squares estimators are the maximum likelihood estimate for normally distributed data and parameters, but here we do not assume particular probability distributions. Weights for the estimator are found by ensuring its minimum follows a χ d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Mathematical Statistics

سال: 1962

ISSN: 0003-4851

DOI: 10.1214/aoms/1177704730